
1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 1/12

Understanding Files

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performing a File Operation
 
1. Declare a file pointer
 
       FILE *fp = fopen(filename, mode);
       
   Mode is "r" for read access, "w" for write access, "r+" for read/write 
access, "w+" reading/writing, a+ append mode creating
   a new file if one did not exist
   



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 2/12

In [1]:

In [2]:

Data read from the file: Hello, world

2. Perform the file operations
 
       fgets(buffer, sizeof(buffer), fp);
       
       fputs(buffer, fp);
       
3. Close the file
 
       fclose(fp);

#include <stdio.h>
 
int main(void)
{
    FILE *fp = fopen("Output.txt", "w");
    
    fputs("Hello, world", fp);
    
    fclose(fp);
}

#include <stdio.h>
 
int main(void)
{
    FILE *fp = fopen("Output.txt", "r");
    char buffer[256];
    
    fgets(buffer, sizeof(buffer), fp);
    printf("Data read from the file: %s", buffer);
}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 3/12

Writing Output and Reading Input to/from a File a
Character at a Time

In [3]:

In [4]:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

#include <stdio.h>
 
int main(void)
{
   FILE *fp = fopen("Alphabet.txt", "w");
   
   for (char letter = 'A'; letter <= 'Z'; letter++)
     fputc(letter, fp);
     
   fclose(fp);
}

#include <stdio.h>
 
int main(void)
{
   FILE *fp = fopen("Alphabet.txt", "r");
   char letter;
   
   while ((letter = fgetc(fp)) != EOF)
     putchar(letter);
     
   fclose(fp);
}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 4/12

Writing/Reading Formatting Output to/from a
File

In [5]:

In [6]:

In [7]:

Data read from file: Kris 50 100000.000000 

#include <stdio.h>
 
int main(void)
{
    FILE *fp = fopen("Sample.txt", "w");
    
    fprintf(fp, "%s %d %f", "Kris", 50, 100000.0);
    
    fclose(fp);
}

#include <stdio.h>
 
int main(void)
{
    FILE *fp = fopen("Sample.txt", "r");
    char name[256];
    int age;
    float salary;
    
    
    fscanf(fp, "%s %d %f", name, &age, &salary);
    
    printf("Data read from file: %s %d %f\n", name, age, salary);
}

#include <stdio.h>
 
int main(void)
{
    FILE *fp = fopen("Sample.txt", "w");
    
    fprintf(fp, "%s %d %f", "Kris Jamsa", 50, 100000.0);  // White space error
    
    fclose(fp);
}



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 5/12

In [8]:

Checking if a File Exists

Data read from file: Kris 421308216 0.000000 

#include <stdio.h>
 
int main(void)
{
    FILE *fp = fopen("Sample.txt", "r");
    char name[256];
    int age;
    float salary;
    
    fscanf(fp, "%s %d %f", name, &age, &salary);         // white space error
    
    printf("Data read from file: %s %d %f\n", name, age, salary);
}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 6/12

In [9]:

Deleting a File
In [10]:

File exists

File Deleted

#include <stdio.h>
 
int main(void)
{
    FILE *fp = fopen("Sample.txt", "r");
    
    if (fp != NULL)
      printf("File exists");
    
    fclose(fp);
}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include <stdio.h>
 
int main(void)
{
    int status = remove("Sample.txt");
    
    if (! status)
      printf("File Deleted");
}
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 7/12

Renaming a File
In [11]:

File renamed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include <stdio.h>
 
int main(void)
{
    int status = rename("Output.txt", "Output.bak");
    
    if (! status)
      printf("File renamed\n");
    else
      printf("Error renaming file\n");
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 8/12

Writing Structured Data to a File
In [12]:

 
 
 
 
 
 
 
 
 
 

#include <stdio.h>
 
struct Employee { 
  int EmployeeID;
  char EmployeeName[256];
  char JobTitle[256];
  float Salary;
  char Phone[32];
};
 
void StoreStaff(struct Employee *worker)
{
    FILE *fp = fopen("Employee.dat", "wb");
    
    fwrite(worker, sizeof(struct Employee), 1, fp);
    
    fclose(fp);
}
 
int main(void)
{
  struct Employee coder = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1212" 
  
  StoreStaff(&coder);
}



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 9/12

In [13]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212 

#include <stdio.h>
#include <string.h>
 
struct Employee { 
  int EmployeeID;
  char EmployeeName[256];
  char JobTitle[256];
  float Salary;
  char Phone[32];
};
 
void LoadStaff(struct Employee *worker)
{
    FILE *fp = fopen("Employee.dat", "rb");
    
    fread(worker, sizeof(struct Employee), 1, fp);
    
    fclose(fp);
}
 
 
void ShowEmployee(struct Employee worker)
{
    printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
          worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary, 
}
 
 
int main(void)
{
  struct Employee coder;
  
  LoadStaff(&coder);  
  ShowEmployee(coder);
}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 10/12

Testing a File Stream for Errors
In [14]:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

 
 
 
 
 

#include <stdio.h>
 
int main(void)
{ 
    FILE *fp = fopen("Alphabet.txt", "r");
    
    if (fp == NULL)
    {
      printf("Error opening file\n");
      return(-1);
    }
    else
    {
        char letter;
        
        while ((letter = fgetc(fp)) != EOF)
          if (ferror(fp))
          {
              printf("Error reading file\n");
              return(-1);
          }
        else
            putchar(letter);
        
        fclose(fp);
    } 
}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 11/12

Creating and Using Temporary File
In [15]:

 
 
 
 
 
 
 

#include <stdio.h>
 
int main(void)
{
    FILE *tp = tmpfile();
    
    fputs("ABCDE", tp);
    fputs("FGHIJ", tp);
    
    fseek(tp, 0, SEEK_SET);  // move to start of file
    
    char letter;
    
    while ((letter = fgetc(tp)) != EOF)
      putchar(letter);
           
    fclose(tp);
}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1/31/2021 C Programming-File Operations

localhost:8888/notebooks/C Programming-File Operations.ipynb 12/12

What You will Learn Next
When your run a program from a system prompt, the command you type is called 
the command line. 
 
C:\> COPY source.ext source.bak
 
To allow your programs to access the command line arguments, you can use two 
parameters the operating system passes to main:
 
int main(int argc, char *argv[])
 
In the previous command line:
 
argc = 3
argv[0] = copy.exe
argv[1] = source.ext
argv[2] = source.bak

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


